Clinical Variable Relationship Evaluation using Decision Tree Rule Extraction

نویسندگان

  • Chandrima Sarkar
  • Jaideep Srivastava
چکیده

Evaluating associations and relationships between variable is a very challenging and important problem in the domain of medicine and clinical data analysis. Not many classification methods have been tried in the literature to tackle this problem. Decision Tree is one of the most important data mining methods that can be used, due to their property of implicitly performing variable screening or feature selection and their requirement of relatively little effort from users for data preparation. However, a major drawback associated with the use of decision tree for decision making is their lack of interpret-able capability specially when using tools like Weka. Though decision trees can achieve a high predictive accuracy rate, the reasoning behind how they reach their decisions is not readily available. But this problem can be handled very easily if the decision tree can be utilized by extracting their rules and analyzing these rules. In this paper we present an approach for extracting rules from the decision tree which can be utilized for determining relationship between clinical variables. Furthermore, we also discuss how these rules can be visualized in a compact and intuitive tabular format that facilitates easy analysis. 1 It is concluded that decision tree rule extraction can be considered as powerful analysis tools that allow us to facilitate analysis of clinical variables and its association.

منابع مشابه

Application of the rule extraction method to evaluate seismicity of Iran

Assessing seismic hazards involves specifying the likelihood, magnitude and location of earthquakes in a region. Predicting the seismic hazards is the first step in reducing the impact of the damage caused by an earthquake.  In this study, to fully utilize all the known parameters which may possibly affect the occurrence of earthquakes (mb ≥ 4.5); a data-driven rule-extraction method called the...

متن کامل

Fuzzy Decision Tree Based Rule Extraction in Securities Analysis

While larger and larger pools of stock market data are available for investors, it is crucial for them to achieve the knowledge hidden behind and make the correct selections. The huge data amount, the variable data characteristic, and the noisy environment make this goal a great challenge. Using the model of fuzzy decision tree based rules extraction, a new set of fuzzy rules to select stocks w...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

Extended Taxonomy of Rule Extraction Techniques and Assessment of KDRuleEx

Classifiers like ANN & SVM are always preferred over other classification model like decision tree due to higher accuracy but lacking explainability and comprehensibility. Rule extraction techniques bridges gap between accuracy and comprehensibility. To evaluate and compare different rule extraction techniques, we require measures for evaluation and categorization. Taxonomy helps us to select a...

متن کامل

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014